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Block-Structured Adaptive Mesh
Refinement

Lecture 2

B Incompressible Navier-Stokes Equations
— Fractional Step Scheme

® 1-D AMR for “classical” PDE'’s
— hyperbolic
— elliptic
— parabolic

B Accuracy considerations
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Extension to More General Systems :%

EEEEEEEEEEE

How do we generalize the basic AMR ideas to more general systems?

Incompressible Navier-Stokes equations as a prototype
Ui +U -VU+ Vp =€eAU

V-U=0

B Advective transport
B Diffusive transport
B Evolution subject to a constraint
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Hodge decomposition: Any vector field V' can be written as
V=U;+Vo
where V- U,; =0 and U - n = 0 on the boundary

The two components, U,; and V¢ are orthogonal
/U Vo dr =0

With these properties we can define a projection P

such that

with P =P and ||P|| = 1
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Projection form of Navier-Stokes coae ||

Incompressible Navier-Stokes equations
U+ U-VU+ Vp =AU

V-U=0
Applying the projection to the momentum equation recasts the system as
an initial value problem

U +P(U - VU — eAU) = 0

Develop a fractional step scheme based on the projection form of
equations

Design of the fractional step scheme takes into account issues that will
arise in generalizing the methodology to

= More general Low Mach number models
= AMR
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Discrete projection coar ||

Projection separates vector fields into orthogonal components
V=U;+Vo

Orthogonality from integration by parts (with U - n = 0 at boundaries)

/U-Vpdx:—/V~Upda::O
Discretely mimic the summation by parts:

Y U-GP=-) (DU)p

In matrix form D = —G¥

Discrete projection
V=U;+ Gp

DV =DGp Ug;=V —-Gp

P=1-GDG) 'D
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Spatial discretization :%
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Define discrete variables so that U, Gp defined at the same locations and
DU, p defined at the same locations.

D : Vspace — Dspace G : Pspace — Vspace

Candidate variable definitions:

% P
L 4 4
o (] [ ) ([
p- 1 u,v u,v,p
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Projection discretizations ’%

EEEEEEEEEEE

What is the DG stencil corresponding to the different discretization choices

X
X X% XK
X X X XK X X X
X ZS K
X

Non-compact stencils — decoupling in matrix
Decoupling is not a problem for incompressible Navier-Stokes with
homogeneous boundary conditions but it causes difficulties for
® Nontrivial boundary conditions
B | ow Mach number generalizations
m AMR
Fully staggered MAC discretization is problematic for AMR
B Proliferation of solvers
B Algorithm and discretization design issues
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Approximate projection methods :%

EEEEEEEEEEE

Based on AMR considerations, we will define velocities at cell-centers

Discrete projection
V=U;+Gp

DV =DGp Uz=V —-Gp

P=1-GDG) D

X
K X
X X X X
X% K
X

Avoid decoupling by replacing inversion of DG in definition of P by a
standard elliptic discretization.
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Approximate projection methods :m

Analysis of projection options indicates staggered pressure has "best"
approximate projection properties in terms of stability and accuracy.

DU U141 T Ui, T UG 41 T U
i+, 4+ IAT

Vit1,j+1 + Vij4+1 — Wit1,j — Uij
2Ay

_|_

Pit+1/2,j+1/2TPit1/2,j—1/2—Pi—1/2,j+1/2—Di—1/2,j—1/2

2Ax
Gpi; =
Di+1/2,j4+1/2TDPi—1/2,j+1/2~Pi+1/2,5—1/2—Pi—1/2,j—1/2
2Ay
Projection is givenby P =71 — G(L)"'D
XX
where L is given by bilinear finite element basis
X

Nine point discretization
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2nd Order Fractional Step Scheme coee ||

First Step:

Construct an intermediate velocity field U™:

U 4+ U*
2

Uur-u"
At

Second Step:

_[UAPY .Ut —vp T A

Project U™ onto constraint and update p. Form

*

U n—3
V = At+Gp

Solve

Set
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Computation of Advective Derivatives %

B Start with U™ at cell centers
B Predict normal velocities at cell edges using variation of second-order
n+1/2  n+1/2
Godunov methodology = Uith /950 112
B MAC-project the edge-based normal velocities, i.e. solve
DMAC(GMACw) _ pMACm+1/2
and define normal advection velocities

ADV  _  n+l1/2 2 ADV  _ n+1/2 y
Uit1/2,5 = Uip1ja; — G ¥ Viji1/2 =V 51 G Y

m Use these advection velocities to define [U4PY . vu|»+1/2.

u
- U
L

( J
o[[foe[]]le
[ J

o|:|><

Bell Lecture 2 —p. 11/27



~

Second-order projection algorithm %

EEEEEEEEEEE

Properties Algorithm components
B Second-order in space and time B Explicit advection
B Robust discretization of B Semi-implicit diffusion

advection terms using modern

m Ellipti iecti
upwind methodology iptic projections

= 5-point cell-centered

B Approximate projection formula- = 9-point node-centered

tion
How do we generalize AMR to work for projection algorithm?

Look at discretization details in one dimension
B Revisit hyperbolic
m Elliptic
B Parabolic

Spatial discretizations
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Consider U + F, = 0 discretized with an explicit finite difference
scheme:

n+1 n }Wn%_% _
u,"" —U; Tic1)2
At N Ax

n%—%
f@4—1/2

In order to advance the composite solution we must specify how to
compute the fluxes:

ACUf Axe

At!

J—1 ] J J+1

B Away from coarse/fine interface the coarse grid sees the average of

fine grid values onto the coarse grid
B Fine grid uses interpolated coarse grid data
B The fine flux is used at the coarse/fine interface
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Hyperbolic—composite coor ||

One can advance the coarse grid

|
Atf | ‘

(J—1) J J+1
then advance the fine grid

I I I
o—Loe_Lg_L

-1 j (G+1)
using “ghost cell data” at the fine level interpolated from the coarse grid
data.

T rTr
Atf ‘

This results in a flux mismatch at the coarse/fine interface, which creates
an error in U}””. The error can be corrected by refluxing, i.e. setting

Before the next step one must average the fine grid solution onto the
coarse grld Bell Lecture 2 — p. 14/27
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Hyperbolic-subcycling :m

To subcycle in time we advance the coarse grid with At©

-
(J—1) J J+1

and advance the fine grid multiple times with A¢/.
The refluxing correction now must

Y, L be summed over the fine grid time
bkt steps:

Atf | | | PS:
S

A -
o-lLgo-L gL

oy — AtF5_yp+ > AUFL
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AMR Discretization algorithms %

EEEEEEEEEE

Design Principles:
B Define what is meant by the solution on the grid hierarchy.

B |dentify the errors that result from solving the equations on each level
of the hierarchy “independently” (motivated by subcycling in time).

B Solve correction equation(s) to “fix” the solution.
B For subcycling, average the correction in time.

Coarse grid supplies Dirichlet data as boundary conditions for the fine
grids.

Errors take the form of flux mismatches at the coarse/fine interface.
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Elliptic roeee) §

Consider —¢z = p on a locally refined grid:

i—1 J J+1
We discretize with standard centered differences except at j and J. We

then define a flux, gb;_f, at the coarse / fine boundary in terms of ¢/ and ¢°
and discretize in flux form with

1 c—f_(¢j_¢j—1)) o
A:Cf v Ailif _pj

ati =4 and

at 1 = J.

This defines a perfectly reasonable linear system but ...
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Elliptic — composite e §

EEEEEEEEEEE

Suppose we solve

1 <(¢1+1 —¢r)  (¢1 —¢I1)> B
= p1

ch ACCC B ch

at all coarse grid points I and then solve

= Pi

_ Az _

1 @Hl —¢;)  (9; —di1)

at all fine grid points 7 # j and use the “correct” stencil at : = j, holding the
coarse grid values fixed.

Jg—1 J J+1
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Elliptic — synchronization :%

EEEEEEEEEEE

The composite solution defined by ¢ and 4’ satisfies the composite
equations everywhere except at J.

The error is manifest in the difference between ¢5 7 and wﬁﬁj—l).

Lete = ¢ — ¢. Then —A"e = 0 except at I = J where

ho 1 (07 —d7_1) —f
AeAa:C< Az e )

Solve the composite for e and correct
. gbc _ EC 4+ e
af =3 1 ef
The resulting solution is the same as solving the composite operator
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Parabolic — composite :%

Consider u; + fz = eugzz and the semi-implicit time-advance algorithm:

wl T fﬁ:% - f:jl% 3 h n+1 h, n
At T Aa =5 (@M @ahu),)
Az g Az,
At
7—1 3 J J+1

Again if one advances the coarse and fine levels separately, a mismatch in
the flux at the coarse-fine interface results.

Let w7 be the initial solution from separate evolution
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Parabolic — synchronization :%

The difference ™! between the exact composite solution » ™! and the
solution @ found by advancing each level separately satisfies

At n At
(I—S—A )" = == (3 +6D)
Atof = At <_?J—1/2 + fit1/2)
o eAt —c,n —c,n+1 c—f.n —f,n+1
At oD = DN ((uwjj_l/Q +ua;,J—1/2) (z T Uz ))

Source term is localized to to coarse cell at coarse / fine boundary

Updating ™! = @" ™! + ¢ again recovers the exact composite solution
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Advance coarse grid Advance fine grid r times
I ; -
: At __L
| f '
Atc: At __L
: Atf |
I —L
| f '
I I N At @—L
(J—1) J J+1 i—1 3 (+1)

The refluxing correction now must be summed over the fine grid time
steps:

B eAt° h n+1 At°
(1= S5-AM e = 22 (3f 4 8D)
Atc 5f m— —Atc ?J—l/Q —|— Z Atffj+1/2
c eAL° _c,n —c,n+1
At oD = 5 (@, g_1y2 T Uy g 212)

Ath _
_ Z€2t (ug f,n_|_u§ f,n+1)
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Spatial accuracy — cell-centered ]

Modified equation gives
wcomp _ wexact _I_A—chomp

where 7 is a local function of the solution derivatives.

Simple interpolation formulae are not sufficiently accurate for second-order
operators

1%

— =
@

(pc-f
X
— _(Ec-f
X
| 9y

X

o O
@--{-o-0-¢----@

(0%

X
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Convergence results —

Local Truncation Error

D | Norm | Az | [|[L(Ue) = plln | [[E(Ue) = pll2n | R P

2 | Lo | 1/32 | 1.57048e-02 2.80285e-02 1.78 || 0.84
2 | Lo | 1/64 | 8.08953e-03 1.57048e-02 1.94 || 0.96
3 | Lo | 1/16 | 2.72830e-02 5.60392e-02 | 2.05 || 1.04
3 | Lo | 1/32 | 1.35965e-02 2.72830e-02 | 2.00 || 1.00
3| L | 1/32 | 8.35122e-05 3.93200e-04 | 4.70 || 2.23

Solution Error

D | Norm Ax ||Up — Ue]] ||Uzp — Ue|| R P
2 L 1/32 | 5.13610e-06 1.94903e-05 3.79 1.92
2 Lo 1/64 1.28449e-06 5.13610e-06 3.99 2.00
3 L 1/16 | 3.53146e-05 1.37142e-04 3.88 1.96
3 L 1/32 | 8.88339e-06 3.53146e-05 3.97 1.99
computed  exact —1_—
(0 = 1) + L 7

Solution operator smooths the error
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Spatial accuracy — nodal
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Node-based solvers:

® ®
D
D
P
¢ ®
D
D
D
o o

B Symmetric self-adjoint matrix
B Accuracy properties given by approximation theory
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Recap caer. V|

Solving coarse grid then solving fine grid with interpolated Dirichlet
boundary conditions leads to a flux mismatch at boundary

Synchronization corrects mismatch in fluxes at coarse / fine boundaries.

Correction equations match the structure of the process they are
correcting.

B For explicit discretizations of hyperbolic PDE’s the correction is an
explicit flux correction localized at the coarse/fine interface.

B For an elliptic equation (e.g., the projection) the source is localized on
the coarse/fine interface but an elliptic equation is solved to distribute
the correction through the domain. Discrete analog of a layer
potential problem.

B For Crank-Nicolson discretization of parabolic PDE’s, the correction
source is localized on the coarse/fine interface but the correction
equation diffuses the correction throughout the domain.
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Efficiency considerations %

For the elliptic solves, we can substitute the following for a full composite
solve with no loss of accuracy

B Solve Ay = ¢° on coarse grid

m Solve Ay’ = ¢/ on fine grid using interpolated Dirichlet boundary
conditions

B Evaluate composite residual on the coarse cells adjacent to the fine
grids

B Solve for correction to coarse and fine solutions on the composite
hierarchy

Because of the smoothing properties of the elliptic operator, we can, in
some cases, substitute either a two-level solve or a coarse level solve for
the full composite operator to compute the correction to the solution.

B Source is localized at coarse cells at coares / fine boundary
B Solution is a discrete harmonic function in interior of fine grid
B This correction is exact in 1-D
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